DIMENSIONALITY AUGMENTATION FOR PHASE RETRIEVAL WITH APPLICATIONS

Projection-based algorithms for high NA case and ...?

Oleg Soloviev ${ }^{1,2}$, Hieu Thao Nguyen ${ }^{1,3}$, Michel Verhaegen ${ }^{1}$
22 March 2022
${ }^{1}$ Numerics for Control and Identification Group
Delft Center for Systems and Control
Delft University of Technology
${ }^{2}$ Flexible Optical B.V.
${ }^{3}$ RMIT University Vietnam

INTRODUCTION

PHASE RETRIEVAL PROBLEM FORMULATION

Only absolute values $|x|$ any $y=|\mathcal{F} x|$ of some signal x and its Fourier transform are known. Find the signal.

$$
\begin{equation*}
\text { find } x \in \mathbb{C}^{M}: y=|\mathcal{F} x| \tag{1}
\end{equation*}
$$

PHASE RETRIEVAL IN OPTICS

Recovering wavefront aberration through the PSF a.k.a. "Indirect wavefront sensing"

$$
I(\boldsymbol{\xi})=\left|\mathcal{F}_{2}\left(a(x) \mathrm{e}^{\mathrm{i} \varphi(x)}\right)\right|^{2}
$$

Known information: amplitude
(via the intensity) in the pupil and focal planes
Unknown: phase of the field in these plains
$a(\mathbf{x})$

$I(\xi)$

PHASE RETRIEVAL IN OPTICS

Recovering wavefront aberration through the PSF a.k.a. "Indirect wavefront sensing"

$$
I(\boldsymbol{\xi})=\left|\mathcal{F}_{2}\left(a(x) \mathrm{e}^{\mathrm{i} \varphi(x)}\right)\right|^{2}
$$

Known information: amplitude (via the intensity) in the pupil and focal planes
Unknown: phase of the field in these plains
"The most used algorithm" ${ }^{\text {a }}$ Gerchberg and Saxton (1972), rediscovered by Gonsalves (1976).
> ${ }^{a}$ M. A. Fiddy and U. Shahid, "Legacies of the Gerchberg-Saxton algorithm", Ultramicroscopy, 134, pp. 48-54, 2013.

gerchberg, SAXTON, FIENUP

Fig. 1. Owen Saxton (centre) with Ralph Gerchberg (left) and James Fienup (right). Courtesy of James Fienup.

2D PHASE RETRIEVAL PROBLEM, REFORMULATION

In another form

$$
\begin{align*}
& \left\{\begin{array}{l}
x=\mathcal{F}_{2} x \\
p=|X|, \\
a=|x|
\end{array}\right. \tag{2}\\
& \text { where } x, X \in \mathbb{C}^{(x)}
\end{align*}
$$

2D PHASE RETRIEVAL PROBLEM, REFORMULATION

In another form

Two amplitudes are known
Both phases are unknown

GENERALISATION TO PR OF HIGHER DIMENSIONS

3D PHASE RETRIEVAL PROBLEM (AKA PHASE-DIVERSE PHASE RETRIEVAL)

Easy generalisation to higher dimensions:

$$
\begin{align*}
& \left\{\begin{array}{l}
X=\mathcal{F}_{3} x \\
p=|X|, \\
a=|x|
\end{array}\right. \tag{3}\\
& \text { where } x, X \in \mathbb{C}^{|\times| \times M}
\end{align*}
$$

Easy generalisation to higher dimensions:

In optics, PR is 3D problem
$U(r)=\int A(k) \mathrm{e}^{\mathrm{i}\left(k_{x} x+k_{y} y+k_{z} z\right)} \mathrm{d} k$, where $|k|=\frac{2 \pi}{\lambda}$
Near $z=z_{0}$, finite size of the aperture introduces limitation $k_{x}^{2}+k_{y}^{2} \leq \mathrm{NA}^{2}$

EXAMPLE OF 3D PR PAIR

Superposition of plane waves of unit amplitude with the wave vector belonging to a "spherical cap" approximates 3D PSF near focus
$I=J=M=128$
[1] C. W. McCutchen. Generalized Aperture and the Three-Dimensional Diffraction Image. J. Opt. Soc. Am., 54(2):240, 1964
[2] C. W. McCutchen. Generalized Aperture and the Three-Dimensional Diffraction Image:erratum. J. Opt. Soc. Am., 19(8):1721, 2002

3D TRANSFORM IS REDUCED TO 2D

2D PR is originally 3D PR

Support is sparse in $z \Rightarrow \mathcal{F}_{3}$ can be reduced to \mathcal{F}_{2} (substitute $k_{z}=k_{z}\left(k_{x}, k_{y}\right)=\sqrt{\left(\frac{2 \pi}{\lambda}\right)^{2}-k_{x}^{2}-k_{y}^{2}}$, with $\left.k_{x}^{2}+k_{y}^{2} \leq \mathrm{NA}^{2}\right)$
This can also provide insight on the phase diverse phase retrieval or used for PSF simulation along the z-axis

3D TRANSFORM IS REDUCED TO 2D

2D PR is originally 3D PR

Support is sparse in $z \Rightarrow \mathcal{F}_{3}$ can be reduced to \mathcal{F}_{2} (substitute $k_{z}=k_{z}\left(k_{x}, k_{y}\right)=\sqrt{\left(\frac{2 \pi}{\lambda}\right)^{2}-k_{x}^{2}-k_{y}^{2}}$, with $\left.k_{x}^{2}+k_{y}^{2} \leq \mathrm{NA}^{2}\right)$
This can also provide insight on the phase diverse phase retrieval or used for PSF simulation along the z-axis

"Coherent" 3D phase retrieval - for $z=z_{0}$ (or $m=0$), 2D PSF is the square of the absolute value of sum of (complex-valued) F_{2} of each layer

COHERENT VS INCOHERENT

Two superimposed fields U_{a}, U_{b}, only intensity is measurable: $I_{a} \propto\left|U_{a}\right|^{2}, I_{b} \propto\left|U_{b}\right|^{2}$, total intensity is:

Coherent
$I=I_{a}+I_{b}+2 \sqrt{I_{a} I_{b}} \cos (\Delta \phi)$

Incoherent

$$
I=I_{a}+I_{b}
$$

COHERENT VS INCOHERENT

Two superimposed fields U_{a}, U_{b}, only intensity is measurable: $I_{a} \propto\left|U_{a}\right|^{2}, I_{b} \propto\left|U_{b}\right|^{2}$, total intensity is:

Coherent

$$
I=I_{a}+I_{b}+2 \sqrt{I_{a} I_{b}} \cos (\Delta \phi)
$$

Incoherent

$$
I=I_{a}+I_{b}
$$

For PSFs as $p=|h|^{2}$:

$$
p_{c}=\left|h_{1}+h_{2}\right|^{2} \quad p_{i}=\left|h_{1}\right|^{2}+\left|h_{2}\right|^{2}
$$

Examples of incoherent sum of PSFs: different sources, different wavelengths, different polarisations

IMAGE FORMATION: SCALAR VS VECTOR DIFFRACTION

PSF FROM PHASE, SCALAR DIFFRACTION THEORY

Scalar light theory:

$$
\begin{equation*}
p_{\varphi}=\left|\mathcal{F} a e^{i \varphi}\right|^{2}, \tag{4}
\end{equation*}
$$

so input for the phase retrieval problem is

$$
\begin{equation*}
y=\sqrt{p_{\varphi}}, \tag{5}
\end{equation*}
$$

and it looks for $x: y=|\mathcal{F} x|$,

$$
\begin{equation*}
x=a e^{i \varphi} . \tag{6}
\end{equation*}
$$

$\varphi=\arg x$, hence the name.

Scalar wave example

$U(r, t)$
E.g. sound wave

It can be used as approximation for electromagnetic waves for small NA values (that is small
angles)

PSF FROM PHASE - HIGH NA CASE, LINEAR POLARISATION

Vector nature of light cannot be neglected for high NA values $U(r, t)=\left(U_{x}(r, t), U_{y}(r, t), U_{z}(r, t)\right)$

Transverse wave ${ }^{a}$ in z direction U before the lens, U^{\prime} after the lens

x - and y - linear polarizations
$E_{x}=(1,0,0)$ and $E_{y}=(0,1,0)$ in the entrance pupil after lens change to ${ }^{1}$:

$$
\begin{array}{ll}
E_{x x}=1-\frac{\sigma_{x}^{2}}{1+\sigma_{z}}, & E_{x y}=1-\frac{\sigma_{x} \sigma_{y}}{1+\sigma_{z}}, \\
E_{y x}=-\frac{\sigma_{x} \sigma_{y}}{1+\sigma_{z}}, & E_{y y}=-\frac{\sigma_{y}^{2}}{1+\sigma_{z}}, \\
E_{z x}=-\sigma_{x}, & E_{z y}=-\sigma_{y},
\end{array}
$$

where (σ_{x}, σ_{y}) are normalised to NA coordinates in the pupil, and $\sigma_{z}\left(\sigma_{x}, \sigma_{y}\right)=\sqrt{1-\sigma_{x}^{2}-\sigma_{y}^{2}}$.

Note via duality ray/plane wave $\left(k_{x}, k_{y}, k_{z}\right)=\frac{2 \pi}{\lambda}\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$
[1] M. Mansuripur, Classical Optics and Its Applications (Cambridge University Press, 2009).

Each of the right-hand-side terms in Eq. (7) can be treated as corresponding amplitude modulation in the entrance pupil for calculation of a PSF with the scalar Fourier method:

$$
\begin{equation*}
p_{i}=\left|\mathcal{F}\left(E_{i} \mathrm{e}^{\mathrm{i} \phi+\mathrm{i} \mathrm{z}_{d} k_{z}}\right)\right|^{2} \tag{8}
\end{equation*}
$$

where index i is one of the 6 pairs $x x, y x, z x, x y, y y, z y$.
One obtains thus 6 PSFs $p_{x x}, p_{y x}, p_{z x}, p_{x y}, p_{y y}, p_{z y}$ which can be used to calculate the vector PSF corresponding for any linear polarisation in the entrance pupil. For unspecified polarisation state, all 6 PSFs are summed incoherently:

$$
\begin{equation*}
p=\sum_{i} p_{i} \tag{9}
\end{equation*}
$$

EXAMPLE NA=0.95: AMPLITUDE, PHASE

1.5
1.0
0.5

0
-0.5
-1.0

EXAMPLE NA=0.95: APERTURE APODISATIONS

EXAMPLE NA=0.95: PSFS $p_{x x}, p_{y x}, p_{z x}, p_{x y}, p_{y y}, p_{z y}$

EXAMPLE NA=0.95: "VECTOR" PSF

FROM AMPLITUDE CONSTRAINT TO VECTOR NORM CONSTRAINT

Two different polarisation states in the pupil; they do not interfere \Rightarrow measured PSF is incoherent sum of 2D PSFs

Now the 2D phase retrieval problem becomes:
Find $\varphi \in \mathbb{R}^{(x)}$, if $y, a_{1}, \ldots, a_{M} \in \mathbb{R}^{(\times)}$are known:

$$
\begin{equation*}
y^{2}=\left|\mathcal{F}_{2} a_{1} \mathrm{e}^{\mathrm{i} \varphi}\right|^{2}+\ldots+\left|\mathcal{F}_{2} a_{M} \mathrm{e}^{\mathrm{i} \varphi}\right|^{2} \tag{10}
\end{equation*}
$$

FROM AMPLITUDE CONSTRAINT TO VECTOR NORM CONSTRAINT

Two different polarisation states in the pupil; they do not interfere \Rightarrow measured PSF is incoherent sum of 2D PSFs

Now the 2D phase retrieval problem becomes:
Find $\varphi \in \mathbb{R}^{(x)}$, if $y, a_{1}, \ldots, a_{M} \in \mathbb{R}^{\mid \times 1}$ are known:

$$
\begin{equation*}
y^{2}=\left|\mathcal{F}_{2} a_{1} \mathrm{e}^{\mathrm{i} \varphi}\right|^{2}+\ldots+\left|\mathcal{F}_{2} a_{M} \mathrm{e}^{\mathrm{i} \varphi}\right|^{2} \tag{10}
\end{equation*}
$$

Consider $v=\left[\mathcal{F}_{2} a_{1} e^{i \varphi}, \ldots, \mathcal{F}_{2} a_{M} e^{i \varphi}\right]$. Then Eq. (10) is equivalent to:

$$
\begin{equation*}
y^{2}=\|v\|_{2}^{2}=\left\|\mathcal{F}_{1} v\right\|_{2}^{2}, \tag{11}
\end{equation*}
$$

FROM AMPLITUDE CONSTRAINT TO VECTOR NORM CONSTRAINT

Two different polarisation states in the pupil; they do not interfere \Rightarrow measured PSF is incoherent sum of 2D PSFS

Now the 2D phase retrieval problem becomes:
Find $\varphi \in \mathbb{R}^{(x)}$, if $y, a_{1}, \ldots, a_{M} \in \mathbb{R}^{\mid \times 1}$ are known:

$$
\begin{equation*}
y^{2}=\left|\mathcal{F}_{2} a_{1} \mathrm{e}^{\mathrm{i} \varphi}\right|^{2}+\ldots+\left|\mathcal{F}_{2} a_{M} \mathrm{e}^{\mathrm{i} \varphi}\right|^{2} \tag{10}
\end{equation*}
$$

Consider $v=\left[\mathcal{F}_{2} a_{1} \mathrm{e}^{\mathrm{i} \varphi}, \ldots, \mathcal{F}_{2} a_{M} \mathrm{e}^{\mathrm{i} \varphi}\right]$. Then Eq. (10) is equivalent to:

$$
\begin{equation*}
y^{2}=\|v\|_{2}^{2}=\left\|\mathcal{F}_{1} v\right\|_{2}^{2}, \tag{11}
\end{equation*}
$$

and $\mathcal{F}_{1} v=\mathcal{F}_{1}\left(\left[\mathcal{F}_{2} a_{1} \mathrm{e}^{\mathrm{i} \varphi}, \ldots, \mathcal{F}_{2} a_{M} \mathrm{e}^{\mathrm{i} \varphi}\right]\right)=\mathcal{F}_{3}\left(\left[a_{1} \mathrm{e}^{\mathrm{i} \varphi}, \ldots, a_{M} \mathrm{e}^{\mathrm{i} \varphi}\right]\right)$.

VECTOR PHASE RETRIEVAL AS OTHER CONSTRAINTS ON 3D PR

Incoherent 3D PR problem

$$
\left\{\begin{align*}
X & =\mathcal{F}_{3} x \tag{12}\\
p_{i, j} & =\left\|x_{i, j, \cdot}\right\|_{2}^{2} \\
a & =|x| \\
\arg x_{i, j, 1} & =\ldots=\arg x_{i, j, M}
\end{align*}\right.
$$

where $x, X \in \mathbb{C}^{\prime} \times \mathbb{C}^{j} \times \mathbb{C}^{M}$
Relaxed constraints on X and additional constraint on x
Also generalisation of scalar PR (with $M=1$) \longrightarrow we can try to generalise the approach used for 2D PR (demonstrated on "the most used algorithm")

Iterations $x^{k} \rightarrow X^{k} \rightarrow x^{k+1}, \quad k=1,2, \ldots$

PHASE RETRIEVAL AND GS

THE MOST USED ALGORITHM

Known information: amplitude (via the intensity) in the pupil and focal planes
Unknown: phase of the field in these plains

Repeat until convergence

FEASIBILITY PROBLEM AND PROJECTION-BASED PARADIGM

$$
\begin{aligned}
& A=\left\{x \in \mathbb{C}^{M \times M}:|x|=p\right\} \\
& B=\left\{x \in \mathbb{C}^{M \times M}:|\mathcal{F} x|=P\right\}
\end{aligned}
$$

Find $x \in A \cap B$

1) just any would do
2) closest to x^{0}

FEASIBILITY PROBLEM AND PROJECTION-BASED PARADIGM

$$
\begin{aligned}
& A=\left\{x \in \mathbb{C}^{M \times M}:|x|=p\right\} \\
& B=\left\{x \in \mathbb{C}^{M \times M}:|\mathcal{F} x|=P\right\}
\end{aligned}
$$

$$
\text { Find } x \in A \cap B
$$

$$
\begin{aligned}
& a^{1}=\operatorname{Pr}_{A} x^{0} \\
& b^{1}=\operatorname{Pr}_{B} a^{1} \\
& a^{2}=\operatorname{Pr}_{A} b^{1}
\end{aligned}
$$

$$
b^{k}=\operatorname{Pr}_{B} a^{k}, a^{k+1}=\operatorname{Pr}_{A} b^{k}
$$

- Von Neumann: $A, B-$ convex \Longrightarrow use alternating projections

FEASIBILITY PROBLEM AND PROJECTION-BASED PARADIGM

$$
\begin{aligned}
& A=\left\{x \in \mathbb{C}^{M \times M}:|x|=p\right\} \\
& B=\left\{x \in \mathbb{C}^{M \times M}:|\mathcal{F} x|=P\right\} \\
& \text { Find } x \in A \cap B \\
& a^{1}=\operatorname{Pr}_{A} x^{0} \\
& b^{1}=\operatorname{Pr}_{B} a^{1} \\
& a^{2}=\operatorname{Pr}_{A} b^{1} \\
& \cdots \\
& b^{k}=\operatorname{Pr}_{B} a^{k}, a^{k+1}=\operatorname{Pr}_{A} b^{k}
\end{aligned}
$$

- Von Neumann: $A, B-$ convex \Longrightarrow use alternating projections
- Kruger, Luke, Thao [1]: A, B should be (sub)transversal

FEASIBILITY PROBLEM AND PROJECTION-BASED PARADIGM

$$
\begin{aligned}
& A=\left\{x \in \mathbb{C}^{M \times M}:|x|=p\right\} \\
& B=\left\{x \in \mathbb{C}^{M \times M}:|\mathcal{F} x|=P\right\}
\end{aligned}
$$

$$
\text { Find } x \in A \cap B
$$

$$
\begin{aligned}
& a^{1}=\operatorname{Pr}_{A} x^{0} \\
& b^{1}=\operatorname{Pr}_{B} a^{1} \\
& a^{2}=\operatorname{Pr}_{A} b^{1}
\end{aligned}
$$

$$
b^{k}=\operatorname{Pr}_{B} a^{k}, a^{k+1}=\operatorname{Pr}_{A} b^{k}
$$

- Von Neumann: $A, B-$ convex \Longrightarrow use alternating projections
- Kruger, Luke, Thao [1]: A, B should be (sub)transversal
- The sets in PR problem are transversal

VECTOR GS (WE NEED ONLY TO UPDATE THE PROJECTIONS)

WHAT HAPPENS IN THE IMAGE PLANE: $x^{k} \rightarrow x^{k} ?$

$$
x^{k} \rightarrow X^{k}:
$$

$$
\begin{equation*}
\hat{x}^{k}=\mathcal{F}_{3} x^{k} \tag{13}
\end{equation*}
$$

$$
p_{i, j}=\left\|x_{i, j,} \cdot\right\|_{2}^{2}
$$

The feasible set defined as Cartesian
product of 2 M -dimensional spheres

$$
x^{k} \rightarrow X^{k}:
$$

$$
\begin{equation*}
\hat{x}^{k}=\mathcal{F}_{3} x^{k} \tag{13}
\end{equation*}
$$

This projection is easy to realise - just normalise vector $\hat{X}_{i, j, \text {, }}$:

$$
\begin{equation*}
X_{i, j, \cdot}^{k}=\hat{X}_{i, j,}^{k} \cdot \frac{\sqrt{P_{i, j}}}{\left\|\hat{X}_{i, j, \cdot}^{k}\right\|_{2}} . \tag{14}
\end{equation*}
$$

$$
p_{i, j}=\left\|x_{i, j,} \cdot\right\|_{2}^{2}
$$

The feasible set defined as Cartesian
product of 2 M -dimensional spheres

SOLUTION IN THE PUPIL PLANE $X^{k} \rightarrow x^{k+1}$

$$
X^{k} \rightarrow X^{k+1}
$$

The feasible set defined as Cartesian product of real vector multiplied by a unit complex number

SOLUTION IN THE PUPIL PLANE $X^{k} \rightarrow x^{k+1}$

$$
\begin{align*}
& x^{k} \rightarrow x^{k+1}: \\
& \quad \hat{x}^{k+1}=\mathcal{F}_{3}^{-1} X^{k} \tag{15}
\end{align*}
$$

The feasible set defined as Cartesian product of real vector multiplied by a unit complex number

SOLUTION IN THE PUPIL PLANE $x^{k} \rightarrow x^{k+1}$

$$
\begin{align*}
& x^{k} \rightarrow x^{k+1}: \\
& \quad \hat{x}^{k+1}=\mathcal{F}_{3}^{-1} X^{k} \tag{15}
\end{align*}
$$

Now some projection point-wise on circles with radii a.

The feasible set defined as Cartesian product of real vector multiplied by a unit complex number

Possible projections

SOLUTION IN THE PUPIL PLANE: LEAST-SQUARES

$$
\left\|p_{1}-q_{1}\right\|^{2}+\left\|p_{2}-q_{2}\right\|^{2}=\left(r_{1}\right)^{2}\left\|p_{1} / r_{1}-q\right\|^{2}+\left(r_{2}\right)^{2}\left\|p_{2} / r_{2}-q\right\|^{2} \rightarrow \min _{q,|q|=1}(16)
$$

SOLUTION IN THE PUPIL PLANE: LEAST-SQUARES

$$
\begin{gather*}
\left\|p_{1}-q_{1}\right\|^{2}+\left\|p_{2}-q_{2}\right\|^{2}=\left(r_{1}\right)^{2}\left\|p_{1} / r_{1}-q\right\|^{2}+\left(r_{2}\right)^{2}\left\|p_{2} / r_{2}-q\right\|^{2} \rightarrow \min _{q,|q|=1} \tag{16}\\
q_{0}=\hat{q} /|\hat{q}|, \hat{q}=\frac{r_{1} p_{1}+r_{2} p_{2}}{\left(r_{1}\right)^{2}+\left(r_{2}\right)^{2}} \tag{17}
\end{gather*}
$$

Eq. (16) is the minimiasation of the moment of two-point system with masses r_{1}^{2}, r_{2}^{2} in $p_{1} / r_{1}, p_{2} / r_{2}$, hence q_{0} is the closest point on the unit circle to its COG point \hat{q}

WE HAVE JUST REINVENTED THE FAMOUS GONSALVES FORMULA

For a general case:

$$
\begin{equation*}
\varphi_{i, j,:}^{k+1}=\arg \frac{\sum_{m} a_{i, j, m} \cdot \hat{x}_{i, j, m}^{k+1}}{\sum_{m} a_{i, j, m}^{2}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i, j, m}^{k+1}=a_{i, j, m} \mathrm{e}^{\mathrm{i} \varphi_{i, j,}^{k+1}} \tag{19}
\end{equation*}
$$

Note: this is the Gonsalves formula / Wiener filter often used in multiframe deconvolution, for instance:

$$
\begin{equation*}
I_{n}=O \cdot H_{n} \Rightarrow O=\frac{\sum_{n} I_{n} \cdot H_{n}^{\dagger}}{\sum_{n} H_{n} \cdot H_{n}^{\dagger}} \tag{20}
\end{equation*}
$$

It's easy to show it's a projection (on Cartesian product of 1D complex linear spaces)

EXAMPLES AND CONCLUSIONS

EXAMPLE 1: HIGH-NA PSF

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless case:

EXAMPLE 1: HIGH-NA PSF

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless case:

EXAMPLE 1: HIGH-NA PSF

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless case:

Data phase

Restored phase

EXAMPLE 1: HIGH-NA PSF

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless case:

More details and more advanced algorithms are provided in [1] and [2]
[1] N. Hieu Thao, O. Soloviev, and M. Verhaegen, Phase retrieval based on the vectorial model of point spread function, J. Opt. Soc. Am. A 37, 16 (2020).
[2] N. Hieu Thao, O. Soloviev, R.Luke, and M. Verhaegen, Projection methods for high numerical aperture phase retrieval, Inverse Problems 37 (12), 125005 (2021).

OTHER APPLICATIONS OF INCOHER-
 ENT PHASE RETRIEVAL

The method can be extended to other incoherent sums (all work in progress), like

- multiple wavelengths
- multiple apertures
- multiple sources

The method can be extended to other incoherent sums (all work in progress), like

- multiple wavelengths
- multiple apertures
- multiple sources
even without apparent "physical meaning", like in the following example

EXAMPLE 2: LOW-NA PSF + UNKNOWN BACKGROUND

EXAMPLE 2: LOW-NA PSF + UNKNOWN BACKGROUND

EXAMPLE 2: LOW-NA PSF + UNKNOWN BACKGROUND

Original pupil function $+\delta$-function modulated aperture, the same algorithm

EXAMPLE 2: RESULTS

"Traditional PR"
(GS, 20000 iterations), noiseless

"3D PR", 1000 iterations noiseless

EXAMPLE 2: RESULTS, ADDED NOISE

Poisson noise,

Gaussian noise,

CONCLUSIONS

- 2D PR problem can be generalised to higher dimension setting in two ways, "coherently" and "incoherently"
- Projection-based algorithm can be easily adjusted for both cases
- Incoherent 3D PR can be used for solving PR related problems taking into account the light polarisation or for removing unknown background illumination

For questions: o.a.solovievatudelft.nl

Questions?

GS VS FIENUP OR AP VS DR

Iterative Projections

$$
\begin{gathered}
x_{k+1}=P_{B}\left(P_{A} x_{k}\right) \\
P_{A} \stackrel{\text { def. }}{=} \operatorname{Proj}_{A}
\end{gathered}
$$

Douglas-Rachford

$$
\begin{gathered}
x_{k}=\bar{P}_{A}\left(y_{k}\right) \stackrel{\text { def. }}{=} 2 P_{A}\left(y_{k}\right)-y_{k} \\
y_{k+1}=\frac{1}{2} y_{k}+\frac{1}{2} \bar{P}_{B}\left(x_{k}\right)
\end{gathered}
$$

[1] Gabriel Peyré, http://www.gpeyre.com/

WHY THERE ARE 6 TERMS IN HIGH NA PSF AND NOT 4?

3 components of random orientation of dipole give 6 incoherent components in the collimated beam.

For the tube lens with low NA, the polarisation can be again ignored.

