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introduction



phase retrieval problem formulation

Only absolute values |x| any y = |F x| of some signal x and its Fourier
transform are known. Find the signal.

find x ∈ CM : y = |F x| (1)
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phase retrieval in optics

φ

a(x) I(ξ)

Recovering wavefront aberration through the PSF
a.k.a. “Indirect wavefront sensing” I(ξ) =

∣∣∣F2
(
a(x)eiϕ(x))∣∣∣2

Known information: amplitude
(via the intensity) in the pupil and
focal planes
Unknown: phase of the field in
these plains

“The most used algorithm”a

Gerchberg and Saxton (1972),
rediscovered by Gonsalves (1976).
aM. A. Fiddy and U. Shahid, “Legacies of
the Gerchberg-Saxton algorithm”,
Ultramicroscopy, 134, pp. 48–54, 2013.
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gerchberg, saxton, fienup

[1] P. W. Hawkes, “A distinguished trio, introduction to the Saxton-Smith-Van Dyck 65th-birthday issue,” Ultramicroscopy, 134, pp. 2–5, 2013. 4



2d phase retrieval problem, reformulation

In another form

x X

F 2
i

j

i

j

Two amplitudes are known
Both phases are unknown


X = F2 x
p = |X|
a = |x|

, (2)

where x, X ∈ CI×J

5



2d phase retrieval problem, reformulation

In another form

x X

F 2
i

j

i

j

Two amplitudes are known
Both phases are unknown


X = F2 x
p = |X|
a = |x|

, (2)

where x, X ∈ CI×J

5



generalisation to pr of higher
dimensions



3d phase retrieval problem (aka phase-diverse phase retrieval)

Easy generalisation to higher dimensions:

F 3

x X

i

j

m

i

j

m


X = F3 x
p = |X|
a = |x|

, (3)

where x, X ∈ CI×J×M

In optics, PR is 3D problem
U(r) =

∫
A(k)ei(kxx+kyy+kzz)dk, where

|k| = 2π
λ

Near z = z0, finite size of the aperture
introduces limitation k2x + k2y ≤ NA2

δz = zd

z0 z0 + zd
z0 + 3zd

z0 − 3zd

Ex

(Exx, Eyx, Ezx)

x
y

z

u
v

z(kx, ky, kz)

χ(x)

I−3(u)

I0(u) I1(u)

I3(u)

θ

Pupil plane

Imaging planes
Exit sphere
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example of 3d pr pair

Out[ ]= Out[ ]=

Superposition of plane waves of unit amplitude with the wave vector
belonging to a “spherical cap” approximates 3D PSF near focus

I = J = M = 128

[1] C. W. McCutchen. Generalized Aperture and the Three-Dimensional Diffraction Image. J. Opt. Soc. Am., 54(2):240, 1964

[2] C. W. McCutchen. Generalized Aperture and the Three-Dimensional Diffraction Image:erratum. J. Opt. Soc. Am., 19(8):1721, 2002
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3d transform is reduced to 2d

2D PR is originally 3D PR

Support is sparse in z ⇒ F3 can be reduced to F2 (substitute
kz = kz(kx, ky) =

√( 2π
λ

)2 − k2x − k2y , with k2x + k2y ≤ NA2)

This can also provide insight on the phase diverse phase retrieval or
used for PSF simulation along the z-axis

200 400

200

400

200 400

200

400

F2−→

F 3

xi,j,m Xi,j,m

i

j

i

jm m

Xx

“Coherent” 3D phase retrieval — for z = z0 (or m = 0), 2D PSF is the
square of the absolute value of sum of (complex-valued) F2 of each

layer
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coherent vs incoherent

Two superimposed fields Ua,Ub, only intensity is measurable:
Ia ∝ |Ua|2 , Ib ∝ |Ub|2 , total intensity is:

Coherent
I = Ia + Ib + 2

√
IaIb cos(∆φ)

Incoherent
I = Ia + Ib

For PSFs as p = |h|2:

pc = |h1 + h2|2 pi = |h1|2 + |h2|2

Examples of incoherent sum of PSFs: different sources, different
wavelengths, different polarisations
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image formation: scalar vs vec-
tor diffraction



psf from phase, scalar diffraction theory

Scalar light theory:

pϕ =
∣∣∣F aeiϕ

∣∣∣2 , (4)

so input for the phase retrieval
problem is

y =
√
pϕ, (5)

and it looks for x : y = |F x|,

x = aeiϕ. (6)

ϕ = arg x, hence the name.

Scalar wave example

U(r, t)
E.g. sound wave

It can be used as approximation
for electromagnetic waves for
small NA values (that is small
angles)
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psf from phase — high na case, linear polarisation

Vector nature of light cannot be
neglected for high NA values
U(r, t) = (Ux(r, t),Uy(r, t),Uz(r, t))

Transverse wavea in z direction U
before the lens, U′ after the lens

Ux

Uy

U′
x

U′
y · j+ U′

z · k

aUz = 0

x− and y− linear polarizations
Ex = (1, 0, 0) and Ey = (0, 1, 0) in the
entrance pupil after lens change to1:

Exx =1−
σ2x

1+ σz
, Exy = 1− σxσy

1+ σz
,

Eyx =− σxσy
1+ σz

, Eyy =−
σ2y

1+ σz
,

Ezx =− σx, Ezy =− σy,

(7)
where (σx, σy) are normalised to NA
coordinates in the pupil, and
σz(σx, σy) =

√
1− σ2x − σ2y .

Note via duality ray/plane wave
(kx, ky, kz) = 2π

λ (σx, σy, σz)

[1] M. Mansuripur, Classical Optics and Its
Applications (Cambridge University Press, 2009).
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psf from phase — high na case, no polarisation

Each of the right-hand-side terms in Eq. (7) can be treated as
corresponding amplitude modulation in the entrance pupil for
calculation of a PSF with the scalar Fourier method:

pi =
∣∣∣F (

Eieiφ+izdkz
)∣∣∣2 , (8)

where index i is one of the 6 pairs xx, yx, zx, xy, yy, zy.

One obtains thus 6 PSFs pxx,pyx,pzx,pxy,pyy,pzy which can be used to
calculate the vector PSF corresponding for any linear polarisation in
the entrance pupil. For unspecified polarisation state, all 6 PSFs are
summed incoherently:

p =
∑
i

pi. (9)
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example na=0.95: amplitude, phase
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example na=0.95: aperture apodisations
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example na=0.95: psfs pxx,pyx,pzx,pxy,pyy,pzy
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example na=0.95: “vector” psf
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from amplitude constraint to vector norm constraint

Two different polarisation states in the pupil; they do not interfere⇒
measured PSF is incoherent sum of 2D PSFs

Now the 2D phase retrieval problem becomes:

Find ϕ ∈ RI×J, if y,a1, . . . ,aM ∈ RI×J are known:

y2 =
∣∣∣F2 a1eiϕ

∣∣∣2 + . . .+
∣∣∣F2 aMeiϕ

∣∣∣2 (10)

Consider v = [F2 a1eiϕ, . . . ,F2 aMeiϕ]. Then Eq. (10) is equivalent to:

y2 = ‖v‖22

= ‖F 1 v‖22 ,

(11)

and F 1 v = F 1([F2 a1eiϕ, . . . ,F2 aMeiϕ]) = F3([a1eiϕ, . . . ,aMeiϕ]).
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vector phase retrieval as other constraints on 3d pr

x X Xi,j,·xi,j,·

F 3i

j
m

i

j
m

Incoherent 3D PR problem



X = F3 x

pi,j =
∥∥Xi,j,·∥∥22

a = |x|
arg xi,j,1 = . . . = arg xi,j,M

,

(12)
where x, X ∈ CI × CJ × CM

Relaxed constraints on X and additional constraint on x

Also generalisation of scalar PR (with M = 1) −→ we can try to
generalise the approach used for 2D PR (demonstrated on “the most
used algorithm”)

Iterations xk → Xk → xk+1, k = 1, 2, . . .

20



phase retrieval and gs



the most used algorithm

Known information: amplitude
(via the intensity) in the pupil and
focal planes
Unknown: phase of the field in
these plains

F

Keep phase,
replace
amplitude

F− 1

Repeat until convergence

22



feasibility problem and projection-based paradigm

A B

x0

Find x ∈ A ∩ B

1) just any would do
2) closest to x0

A = {x ∈ CM×M : |x| = p}
B = {x ∈ CM×M : |F x| = P}
Find x ∈ A ∩ B

a1 = PrA x0

b1 = PrB a1

a2 = PrA b1

. . .

bk = PrB ak,ak+1 = PrA bk

∙ Von Neumann: A,B — convex =⇒ use alternating projections
∙ Kruger, Luke, Thao [1]: A,B should be (sub)transversal
∙ The sets in PR problem are transversal
[1] Kruger, A.Y., Luke, D.R., and Thao, N.H. Set regularities and feasibility problems. Math. Program. 168, 279–311 (2018)
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vector gs (we need only to up-
date the projections)



what happens in the image plane: xk → xk?

xk → Xk :

X̂k = F3 xk (13)

This projection is easy to realise — just normalise vector X̂i,j,· :

Xki,j,· = X̂ki,j,· ·
√pi,j∥∥∥X̂ki,j,·∥∥∥2 . (14)

x X Xi,j,·
xi,j,·

F 3i

j
m

i

j
m

pi,j =
∥∥Xi,j,·∥∥22

The feasible set defined as Cartesian

product of 2M-dimensional spheres
25
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solution in the pupil plane xk → xk+1

Xk → xk+1:

x̂k+1 = F−1
3 Xk (15)

x X Xi,j,·xi,j,·

F 3i

j
m

i

j
m

The feasible set defined as Cartesian product of

real vector multiplied by a unit complex number

Now some projection point-wise
on circles with radii a.

ai,j,1ai,j,M
x̂k+1i,j,1

x̂k+1i,j,M

1
2

3

Possible projections
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solution in the pupil plane: least-squares

r1 r2 1

p1

p2 p1/r1 p2/r2

q1

q2 q

·/r2

·/r1

‖p1 − q1‖2+‖p2 − q2‖2 = (r1)2 ‖p1/r1 − q‖2+(r2)2 ‖p2/r2 − q‖2 → min
q,|q|=1

(16)

q0 = q̂/ |q̂| , q̂ =
r1p1 + r2p2
(r1)2 + (r2)2

(17)

Eq. (16) is the minimiasation of the moment of two-point system with
masses r21 , r22 in p1/r1, p2/r2, hence q0 is the closest point on the unit circle to
its COG point q̂
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we have just reinvented the famous gonsalves formula

For a general case:

ϕk+1i,j,· = arg

∑
m ai,j,m · x̂k+1i,j,m∑

m a2i,j,m
(18)

and
xk+1i,j,m = ai,j,meiϕ

k+1
i,j,· (19)

Note: this is the Gonsalves formula / Wiener filter often used in
multiframe deconvolution, for instance:

In = O · Hn ⇒ O =

∑
n In · H

†
n∑

n Hn · H
†
n

(20)

It’s easy to show it’s a projection (on Cartesian product of 1D complex
linear spaces)

28



examples and conclusions



example 1: high-na psf

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless
case:
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0.6
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1.0

-1.0
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1.0

1.5

More details and more advanced algorithms are provided in [1] and [2]
[1] N. Hieu Thao, O. Soloviev, and M. Verhaegen, Phase retrieval based on the vectorial model of point spread function, J. Opt. Soc. Am. A 37,
16 (2020).

[2] N. Hieu Thao, O. Soloviev, R.Luke, and M. Verhaegen, Projection methods for high numerical aperture phase retrieval, Inverse Problems
37 (12), 125005 (2021).
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example 1: high-na psf

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless
case:
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example 1: high-na psf

Input obtained as vectorial PSF (NA = 0.95), 2000 iterations, noiseless
case:

Restoration error
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-0.00025
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More details and more advanced algorithms are provided in [1] and [2]
[1] N. Hieu Thao, O. Soloviev, and M. Verhaegen, Phase retrieval based on the vectorial model of point spread function, J. Opt. Soc. Am. A 37,
16 (2020).

[2] N. Hieu Thao, O. Soloviev, R.Luke, and M. Verhaegen, Projection methods for high numerical aperture phase retrieval, Inverse Problems
37 (12), 125005 (2021). 30



other applications of incoher-
ent phase retrieval



The method can be extended to other incoherent sums (all work in
progress), like

∙ multiple wavelengths
∙ multiple apertures
∙ multiple sources

even without apparent “physical meaning”, like in the following
example

32
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example 2: low-na psf + unknown background

−→

20 40 60 80 100 120

0.5

1.0

1.5

2.0

psf

psf with BG

I(u) =
∣∣∣F2

(
a(x)eiϕ(x))∣∣∣2+b

=
∣∣∣F2

(
a(x)eiϕ(x))∣∣∣2+ ∣∣∣F2

(√
bδ(x)eiϕ(0))∣∣∣2

Original pupil function + δ-function modulated aperture, the same
algorithm

33
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example 2: low-na psf + unknown background

−→

20 40 60 80 100 120

0.5

1.0

1.5

2.0

psf

psf with BG

I(u) =
∣∣∣F2

(
a(x)eiϕ(x))∣∣∣2+b =

∣∣∣F2
(
a(x)eiϕ(x))∣∣∣2+ ∣∣∣F2

(√
bδ(x)eiϕ(0))∣∣∣2

Original pupil function + δ-function modulated aperture, the same
algorithm
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example 2: results

“Traditional PR”
(GS, 20000 iterations), noiseless

-3

-2

-1

0

1

2

3

“3D PR”, 1000 iterations
noiseless

-0.0050

-0.0025

0

0.0025

0.0050
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example 2: results, added noise

Poisson noise,

-1.0

-0.5

0

0.5

1.0

1.5

Gaussian noise,

-0.5

0

0.5

1.0
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conclusions

∙ 2D PR problem can be generalised to higher dimension setting in
two ways, “coherently” and “incoherently”

∙ Projection-based algorithm can be easily adjusted for both cases
∙ Incoherent 3D PR can be used for solving PR related problems
taking into account the light polarisation or for removing unknown
background illumination

For questions: o.a.soloviev@tudelft.nl
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Questions?



gs vs fienup or ap vs dr

[1] Gabriel Peyré, http://www.gpeyre.com/

38

http://www.gpeyre.com/


why there are 6 terms in high na psf and not 4?

3 components of random orientation of dipole give 6 incoherent
components in the collimated beam.

For the tube lens with low NA, the polarisation can be again ignored.
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