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why julia?



a new and promising language

∙ Fast to develop
∙ Fast to execute

∙ Just a new shiny thing

∙ Easy to learn
∙ They say it is very close to the
“whiteboard coding”
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julia fits well algorithm descriptions

A talk from JuliaCon I’ve
seen —they’ve written
the whole book which is
compiled in Julia
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abstract math concepts are not bytes in a computer

Projection on the convex set
x

y

A

y = PrA x

How should I code
this?
Is it possible to code abstract
concepts?
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julia’s abstract and concrete
types



abstract types for concepts, concrete for data

Number types tree

Abstract, concrete and primitive types
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alternating projections and its
relatives



feasibility problem

A B

x0

Find x ∈ A ∩ B

1) just any would do
2) closest to x0

E.g. 1) linear system
2) phase retrieval problem
(PR):
A = {x ∈ CM×M : |x| = p}
B = {x ∈ CM×M : |F x| = P}
p,P are the intensities in pupil
and focal planes

∙ Von Neumann: A,B — convex =⇒ use alternating projections (AP)
∙ H. Thao Ngueng et al: A,B should be (sub)transversal
∙ The sets in PR problem are transversal
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alternating projections for the feasiblity problem

A B

x0

b1
a1 a2 b2 a1 = PrA x0

b1 = PrB a1

a2 = PrA b1

. . .

bk = PrB ak,ak+1 = PrA bk

Extension with forward and backward operators and not-so-convex
sets:

GS: Xk = PrP F xk, xk+1 = Prp F−1 Xk

TIP: hk = PrH i/∗ok, ok+1 = PrO i/∗hk
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feasibleset, problem, and al-
gorithm



orthogonalising the concepts of ap method

Concepts as independent from each other as possible:
Three main abstract types
with subtypes
1. Set :> Convex Set :>
Linear subspace

2. Problem :> Feasibility
problem

3. Algorithm :> AP
Their concrete types
(implementations)
1. ax = b
2. PR Problem for given p,P
3. AP with parameters (?)

abstract type FeasibleSet end

abstract type ConvexSet <: FeasibleSet end

abstract type Problem end

struct FeasibilityProblem <: Problem

A::FeasibleSet

B::FeasibleSet

forward

backward

end

abstract type APMethod end

struct AP <: APMethod

maxit

maxϵ

end
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the first program



ap method realised in julia (for any problem)

We are ready to program it! For any problem, any initial guess, any
algorithm:

function solve(p::Problem,x⁰,alg::APMethod)

error(”Don't know how to solve ”, typeof(p), ” with method ”,

typeof(alg))↪→
end

function project(x, feasset::FeasibleSet)

error(”Don't know how to project on ”, typeof(feasset))

end

If x allows subtraction, we can immediately write reflection operation
for all cases (to be used in DR and DRAP):

reflect(x, feasset::FeasibleSet) = 2 * project(x, feasset) - x

13
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ap method realised in julia

function solve(p::FeasibilityProblem, x⁰, alg::AP)

A = p.A

B = p.B

forward = p.forward

backward = p.backward

maxit = alg.maxit

maxϵ =alg.maxϵ

k = 0

xᵏ = x⁰

ϵ = Inf

while k < maxit && ϵ > maxϵ

ỹ ᵏ = forward(xᵏ)

yᵏ = project(ỹ ᵏ, B)

x̃ ᵏ⁺¹ = backward(yᵏ)

xᵏ⁺¹ = project(x̃ ᵏ⁺¹, A)

ϵ = LinearAlgebra.norm(xᵏ⁺¹ - xᵏ)

xᵏ = xᵏ⁺¹

# println(ϵ)

k += 1

end

println(”To converge with $ϵ accuracy, it took me $k iterations”)

return xᵏ

end
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growing flesh on bones



preparing to extending for some known cases

A convex and not convex examples of often used feasible sets

export APMethod, FeasibleSet, project, ConvexSet, FeasibilityProblem, AP

# Constraints

include(”SupportConstraint.jl”)

include(”AmplitudeConstraint.jl”)

# algortihms

include(”GerchbergSaxton.jl”)
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support constraint: defining

abstract type SupportConstrained <: ConvexSet end

struct ConstrainedBySupport <: SupportConstrained

support::Array{Bool}

end

export ConstrainedBySupport

function project(x, feasset::ConstrainedBySupport)

return feasset.support .* x

end

17



support constraint: testing

julia> using AlternatingProjections

julia> S = ConstrainedBySupport([true, false,true])

ConstrainedBySupport(Bool[1, 0, 1])

julia> x = [1, 2, 3]

3-element Array{Int64,1}:

1

2

3

julia> project(x, S) == [1, 0, 3]

true

julia> S2 = ConstrainedBySupport([1, 0, 1])

ConstrainedBySupport(Bool[1, 0, 1])
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support constraint: testing

Projection doesn’t depend on the support dimension

julia> S3=ConstrainedBySupport([0 0 1 0 0; 0 0 1 0 0; 1 1 1 1 1; 0 0 1 0

0; 0 0 1 0 0]);↪→

julia> x = rand(Int8, 5,5)

5×5 Array{Int8,2}:

30 -92 16 127 5

108 100 126 -111 86

37 -38 -26 -53 -3

27 114 -103 29 29

85 -7 -86 -68 -49

julia> project(x,S3)

5×5 Array{Int8,2}:

0 0 16 0 0

0 0 126 0 0

37 -38 -26 -53 -3

0 0 -103 0 0

0 0 -86 0 0
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support constraint and ap

julia> P = ConstrainedBySupport([1, 0, 1, 0, 1])

ConstrainedBySupport(Bool[1, 0, 1, 0, 1])

julia> Q = ConstrainedBySupport([1, 1, 1, 0, 0])

ConstrainedBySupport(Bool[1, 1, 1, 0, 0])

julia> prb = FeasibilityProblem(P, Q, identity, identity)

FeasibilityProblem(ConstrainedBySupport(Bool[1, 0, 1, 0, 1]),

ConstrainedBySupport(Bool[1, 1, 1, 0, 0]), identity, identity)↪→

julia> mth = AP(200, 0.001)

AP(200, 0.001)

julia> sol = solve(prb, [1, 1, 1, 1, 1], mth)

To converge with 0.0 accuracy, it took me 2 iterations

5-element Array{Int64,1}:

1

0

1

0

0

20



if it works for ap and support constraints, extend it to gs

Just in the same way as explaining in a mathematical prove, we
should be able to extend AP to Gerchberg-Saxton method for phase
retrieval.

Just introduce the correct sets and explain how to project on them:

A = {x ∈ CM×M : |x| = p}

Pr
A
= p · x

|x|

21



amplitude constrain: defining

abstract type AmplitudeConstrainedSet <: FeasibleSet end

export AmplitudeConstrainedSet

struct ConstrainedByAmplitude <: AmplitudeConstrainedSet

amp::Array{T} where T <: Real #todo nongegative

end

export ConstrainedByAmplitude

function project(x, feasset::ConstrainedByAmplitude)

return feasset.amp .* exp.( im * angle.(x))

end

22



amplitude constrain: testing

julia> A = ConstrainedByAmplitude([1, sqrt(2), 5])

ConstrainedByAmplitude([1.0, 1.4142135623730951, 5.0])

julia> y = [2im, -2 + 2im, 6 - 8im]

3-element Array{Complex{Int64},1}:

0 + 2im

-2 + 2im

6 - 8im

julia> project(y, A) ≈ [im, -1 + im, 3 - 4im]

true

julia> project(y, A)

3-element Array{Complex{Float64},1}:

6.123233995736766e-17 + 1.0im

-1.0 + 1.0000000000000002im

3.0000000000000004 - 3.9999999999999996im
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amplitude constrain, fourier, and ap = gs

julia> y = zeros(ComplexF32,10,10);

julia> y[1:5,1:5] = randn(ComplexF32, 5,5);

julia> using FFTW

julia> Y = fft(y)

julia> pr = FeasibilityProblem(ConstrainedByAmplitude(abs.(y)),

ConstrainedByAmplitude(abs.(Y)),fft, ifft);↪→
julia> gs=AP(3000,1e-18);

julia> z= solve(pr, ones(size(y)), gs)

To converge with 3.6638411145107034e-16 accuracy, it took me 3000

iterations↪→
...

julia> abs.(fft(z)) ≈ abs.(Y)

true

julia> abs.(z) ≈ abs.(y)

true

Check it on a more serious example, dude!
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methodology



beyond gerchberg-saxton

Further extensions are possible in a similar way: add new types and
extend methods on them

TIP: PositiveSupport <: ConvexSet and function deconvolve(i,x)

DR change solve(pr,x⁰, method::DR) to use reflection-based
operators

vector GS: new type of set or change solve(pr,x⁰, method::vectorAP) or
new type of problem?
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different ways of orthogonalisation: first attempts

struct GS <: APMethod #todo should be sets part of this or added to the

step! only?↪→
a::AmplitudeConstraint

A::AmplitudeConstraint

end

GS(a::Array, A::Array) = GS(AmplitudeConstraint(a),

AmplitudeConstraint(A))↪→

function init!(alg::GS, x⁰)

a = alg.a

A = alg.A

if !( size(a) == size(A) == size(x⁰) )

println(”cannot intialise Gerchberg-Saxton, dimensions do

not match”)↪→
# raise error or pad a smaller array with zeroes

# also can include realingment of the sets to remove any

linear pahse term. But then need to make GS mutable↪→
return

end

end

function step!(alg::GS, xᵏ)

a = alg.a

A = alg.A

return project(a, ifft(project(A, fft(xᵏ))))

end 27



different ways of orthogonalisation: oop trap

function apstep(xᵏ, A::FeasibleSet, B::FeasibleSet, forward, backward)

ỹ ᵏ = forward(xᵏ)

yᵏ = project(ỹ ᵏ, B)

x̃ ᵏ⁺¹ = backward(yᵏ)

xᵏ⁺¹ = project(x̃ ᵏ⁺¹, A)

end

function apsolve(A, B, ::Type{T}; x⁰=zeros(size(A)), maxit = 20, maxϵ

=0.01) where {T<:APMethod}↪→
alg = T(A,B)

xprev = x⁰

x = xprev

i = 0

ϵ = Inf

while i < maxit && ϵ > maxϵ

x = apstep(xprev, alg.a, alg.A, alg.forward, alg.backward)

ϵ = LinearAlgebra.norm(x - xprev)

xprev = x

i += 1

end

println(”To converge with $ϵ accuracy, it took me $i iterations”)

return x

end

28



julian way: multiple dispatch

Multiple dispatch: data defines the behaviour of the function (all
variables of the function)

OOP: object has a collection of methods (functions), that is only one
variable (object type) defines the behaviour of the function

Classes & inheritance vs types and methods
gs.solve(.,.,.) and tip.solve(.,.,.) vs solve(.,.,::GS) and solve(.,.,::TIP)

gs.solve(.,.,.) and tip.solve(.,.,.) vs solve(::XX,.,::GS) and solve(:XX,.,::TIP)

The second approach is more flexible (can add new things without
worrying about the existing ones) and generalisation of auto-method
selection solve(pr,x⁰) is easy
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conclusions



it works indeed

∙ Writing in Julia promotes “Generic programming” paradigm
∙ It is indeed similar to mathematical description
∙ Abstract types represent mathematical concepts and concrete
types their implementations

∙ The orthogonalisation of the types and methods is an iterative
process which might bring better understanding and opens
possibilities for experimenting with novel methods

31



everyone is welcome

https://github.com/olejorik/AlternatingProjections.jl

Instructions on how to get started and on the workflow included
https://olejorik.github.io/AlternatingProjections.jl/

docs/build/index.html#Workflow-and-package-structure-1

References:

∙ https://julialang.org/
∙ https://www.youtube.com/playlist?list=
PLP8iPy9hna6StY9tIJIUN3F_co9A0zh0H – JuliaCon 2019

∙ https://julia.quantecon.org/more_julia/generic_
programming.html

∙ https://docs.junolab.org/latest/ — IDE
∙ https://plugins.jetbrains.com/plugin/10413-julia — IDE
∙ https://www.youtube.com/watch?v=QVmU29rCjaA —
developing packages in Julia
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