GENERIC PROGRAMMING IN JULIA

On example of AlternatingProjections.jl: a personal experience

Oleg Soloviev^{1,2}

15 October 2019

¹Numerics for Control and Identification Group Delft Center for Systems and Control Delft University of Technology

²Flexible Optical B.V.

WHY JULIA?

- $\cdot\,$ Fast to develop
- Fast to execute

- $\cdot\,$ Fast to develop
- · Fast to execute
- · Just a new shiny thing

- · Fast to develop
- \cdot Fast to execute
- · Just a new shiny thing

 $\cdot\,$ Easy to learn

- $\cdot\,$ Fast to develop
- · Fast to execute
- \cdot Just a new shiny thing

- $\cdot\,$ Easy to learn
- They say it is very close to the "whiteboard coding"

MATLAB	PYTHON	JULIA
Create a matrix		
A = [1 2; 3 4]	A = np.array([[1, 2], [3, 4]])	A = [1 2; 3 4]
2 x 2 matrix of zeros		
A = zeros(2, 2)	A = np.zeros((2, 2))	A = zeros(2, 2)
2 x 2 matrix of ones		
A = ones(2, 2)	A = np.ones((2, 2))	A = ones(2, 2)
2 x 2 identity matrix		
A = eye(2, 2)	A = np.eye(2)	A = I # will adopt # 2x2 dims if demanded by

A talk from JuliaCon I've seen —they've written the whole book which is compiled in Julia

Algorithms for Optimization

Mykel J. Kochenderfer and Tim A. Wheeler

iteration for Adam are:

biased decaying momentum:
$$\mathbf{v}^{(k+1)} = \gamma_0 \mathbf{v}^{(k)} + (1 - \gamma_0) \mathbf{g}^{(k)}$$
 (5.29)
biased decaying sq. gradient: $\mathbf{s}^{(k+1)} = \gamma_5 \mathbf{s}^{(k)} + (1 - \gamma_5) \left(\mathbf{g}^{(k)} \odot \mathbf{g}^{(k)} \right)$ (5.30)
corrected decaying momentum: $\mathbf{v}^{(k+1)} = \mathbf{v}^{(k+1)} / (1 - \gamma_0^k)$ (5.31)

corrected decaying sq. gradient:
$$\hat{\mathbf{s}}^{(k+1)} = \mathbf{s}^{(k+1)} / (1 - \gamma_s^k)$$
 (5.32)

next iterate:
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \hat{\mathbf{v}}^{(k+1)} / \left(\epsilon + \sqrt{\hat{\mathbf{s}}^{(k+1)}}\right)$$

```
mutable struct Adam <: DescentMethod
    α # learning rate
    vv # decav
    ys # decay
    e # small value
    k # step counter
    v # 1st moment estimate
    s # 2nd moment estimate
end
function init!(M::Adam. f. ⊽f. x)
    M \mathbf{k} = \mathbf{0}
    M, v = zeros(length(x))
    M.s = zeros(length(x))
    return M
function step!(M::Adam, f, ⊽f, x)
    \alpha, \gamma v, \gamma s, \epsilon, k = M.\alpha, M.\gamma v, M.\gamma s, M.\epsilon, M.k
    s, v, q = M.s, M.v, \nabla f(x)
    v[:] = vv^*v + (1-vv)^*a
    s[:] = \gamma s^* s + (1 - \gamma s)^* q.*q
    M.k = k += 1
    v hat = v . / (1 - vv^k)
    s hat = s ./ (1 - \gamma s^k)
    return x - \alpha^*v hat ./ (sgrt.(s hat) .+ \epsilon)
end
```


Projection on the convex set Х $y = \Pr_A x$ V Α

How should I code this?

Is it possible to code abstract concepts?

JULIA'S ABSTRACT AND CONCRETE TYPES

ABSTRACT TYPES FOR CONCEPTS, CONCRETE FOR DATA

Number types tree Abstract, concrete and primitive types

ALTERNATING PROJECTIONS AND ITS RELATIVES

just any would do
 closest to x⁰

E.g. 1) linear system

just any would do
 closest to x⁰

just any would do
 closest to x⁰

E.g. 1) linear system 2) phase retrieval problem (PR): $A = \{x \in \mathbb{C}^{M \times M} : |x| = p\}$ $B = \{x \in \mathbb{C}^{M \times M} : |\mathcal{F}x| = P\}$ p, P are the intensities in pupil and focal planes

E.g. 1) linear system 2) phase retrieval problem (PR): $A = \{x \in \mathbb{C}^{M \times M} : |x| = p\}$ $B = \{x \in \mathbb{C}^{M \times M} : |\mathcal{F}x| = P\}$ p, P are the intensities in pupil and focal planes

just any would do
 closest to x⁰

· Von Neumann: $A, B - \text{convex} \implies$ use alternating projections (AP)

E.g. 1) linear system 2) phase retrieval problem (PR): $A = \{x \in \mathbb{C}^{M \times M} : |x| = p\}$ $B = \{x \in \mathbb{C}^{M \times M} : |\mathcal{F}x| = P\}$ p, P are the intensities in pupil and focal planes

just any would do closest to x⁰

- · Von Neumann: A, $B \text{convex} \implies$ use alternating projections (AP)
- H. Thao Ngueng *et al*: A, B should be (sub)transversal

E.g. 1) linear system 2) phase retrieval problem (PR): $A = \{x \in \mathbb{C}^{M \times M} : |x| = p\}$ $B = \{x \in \mathbb{C}^{M \times M} : |\mathcal{F}x| = P\}$ p, P are the intensities in pupil and focal planes

just any would do
 closest to x⁰

- · Von Neumann: A, $B \text{convex} \implies$ use alternating projections (AP)
- H. Thao Ngueng *et al*: A, B should be (sub)transversal
- The sets in PR problem are transversal

$$a^1 = \Pr_A x^0$$

$$a^{1} = \Pr_{A} x^{0}$$
$$b^{1} = \Pr_{B} a^{1}$$

$$a^{1} = \Pr_{A} x^{0}$$
$$b^{1} = \Pr_{B} a^{1}$$
$$a^{2} = \Pr_{A} b^{1}$$

$$a^{1} = \Pr_{A} x^{0}$$

$$b^{1} = \Pr_{B} a^{1}$$

$$a^{2} = \Pr_{A} b^{1}$$

$$\cdots$$

$$b^{k} = \Pr_{B} a^{k}, a^{k+1} = \Pr_{A} b^{k}$$

Extension with forward and backward operators and *not-so-convex* sets:

GS:
$$X^k = \Pr_P \mathcal{F} X^k, \ X^{k+1} = \Pr_P \mathcal{F}^{-1} X^k$$

Extension with forward and backward operators and *not-so-convex* sets:

GS:
$$X^k = \Pr_P \mathcal{F} X^k$$
, $X^{k+1} = \Pr_P \mathcal{F}^{-1} X^k$
TIP: $h^k = \Pr_{\mathcal{H}} i/_* o^k$, $o^{k+1} = \Pr_{\mathcal{O}} i/_* h^k$

FEASIBLESET, PROBLEM, AND AL-GORITHM

Concepts as independent from each other as possible: Three main abstract types with subtypes

- 1. Set :> Convex Set :> Linear subspace
- 2. **Problem** :> Feasibility problem
- 3. Algorithm :> AP

Their concrete types (implementations)

1. **a**x = **b**

- 2. PR Problem for given p, P
- 3. AP with parameters (?)

Concepts as independent from each other as possible:

Three main abstract types with subtypes

- 1. **Set** :> Convex Set :> Linear subspace
- 2. **Problem** :> Feasibility problem
- 3. Algorithm :> AP

Their concrete types (implementations)

1. **a**x = **b**

- 2. PR Problem for given p, P
- 3. AP with parameters (?)

```
abstract type FeasibleSet end
abstract type ConvexSet <: FeasibleSet end</pre>
abstract type Problem end
struct FeasibilityProblem <: Problem</pre>
        A::FeasibleSet
        B:: FeasibleSet
        forward
        backward
end
abstract type APMethod end
struct AP <: APMethod
        maxit
        maxe
end
```

THE FIRST PROGRAM

```
function project(x, feasset::FeasibleSet)
            error("Don't know how to project on ", typeof(feasset))
end
```

```
function project(x, feasset::FeasibleSet)
        error("Don't know how to project on ", typeof(feasset))
end
```

If *x* allows subtraction, we can immediately write reflection operation for all cases (to be used in DR and DRAP):

```
reflect(x, feasset::FeasibleSet) = 2 * project(x, feasset) - x
```

```
function solve(p::FeasibilityProblem, x<sup>o</sup>, alg::AP)
           A = p.A
           B = p.B
           forward = p.forward
           backward = p.backward
           maxit = alg.maxit
           maxe =alg.maxe
           \mathbf{k} = \mathbf{0}
           \mathbf{x}^{k} = \mathbf{x}^{0}
           \epsilon = Inf
           while k < maxit && \epsilon > maxe
                       \tilde{y}^{k} = forward(x^{k})
                       y^{k} = project(\tilde{y}^{k}, B)
                       \tilde{x}^{k+1} = backward(y^k)
                       x^{k+1} = \text{project}(\tilde{x}^{k+1}, A)
                       \epsilon = LinearAlgebra.norm(x<sup>k+1</sup> - x<sup>k</sup>)
                       \mathbf{x}^{k} = \mathbf{x}^{k+1}
                       # println(\epsilon)
                       k += 1
           end
           println("To converge with $\epsilon accuracy, it took me $k iterations")
           return xk
end
```

GROWING FLESH ON BONES

A convex and not convex examples of often used feasible sets

```
export APMethod, FeasibleSet, project, ConvexSet, FeasibilityProblem, AP
# Constraints
include("SupportConstraint.jl")
include("AmplitudeConstraint.jl")
# algortihms
include("GerchbergSaxton.jl")
```

```
julia> using AlternatingProjections
julia> S = ConstrainedBySupport([true, false,true])
ConstrainedBySupport(Bool[1, 0, 1])
julia> x = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> project(x, S) == [1, 0, 3]
true
```

```
julia> using AlternatingProjections
julia> S = ConstrainedBySupport([true, false,true])
ConstrainedBySupport(Bool[1, 0, 1])
julia> x = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> project(x, S) == [1, 0, 3]
true
```

```
julia> S2 = ConstrainedBySupport([1, 0, 1])
ConstrainedBySupport(Bool[1, 0, 1])
```

Projection doesn't depend on the support dimension

```
julia> S3=ConstrainedBySupport([0 0 1 0 0; 0 0 1 0 0; 1 1 1 1 1; 0 0 1 0
\leftrightarrow 0; 0 0 1 0 0]);
julia> x = rand(Int8, 5,5)
5×5 Array{Int8,2}:
30 -92 16 127
                 5
108 100 126 -111 86
37 - 38 - 26 - 53 - 3
27 114 -103 29 29
85 -7 -86 -68 -49
julia> project(x,S3)
5×5 Array{Int8,2}:
      16
    0
              0
                 0
   0 126 0
0
               0
  -38 -26 -53 -3
0
    0 -103 0
                 0
0
  0 -86 0 0
```

```
julia> P = ConstrainedBySupport([1, 0, 1, 0, 1])
ConstrainedBySupport(Bool[1, 0, 1, 0, 1])
iulia> 0 = ConstrainedBySupport([1, 1, 1, 0, 0])
ConstrainedBySupport(Bool[1, 1, 1, 0, 0])
julia> prb = FeasibilityProblem(P, Q, identity, identity)
FeasibilityProblem(ConstrainedBySupport(Bool[1, 0, 1, 0, 1]),
← ConstrainedBySupport(Bool[1, 1, 1, 0, 0]), identity, identity)
julia > mth = AP(200, 0.001)
AP(200, 0.001)
julia> sol = solve(prb, [1, 1, 1, 1, 1], mth)
To converge with 0.0 accuracy, it took me 2 iterations
5-element Arrav{Int64,1}:
```

Just in the same way as explaining in a mathematical prove, we should be able to extend AP to Gerchberg-Saxton method for phase retrieval.

Just introduce the correct sets and explain how to project on them:

$$A = \{ x \in \mathbb{C}^{M \times M} : |x| = p \}$$
$$\Pr_{A} = p \cdot \frac{x}{|x|}$$

```
abstract type AmplitudeConstrainedSet <: FeasibleSet end
export AmplitudeConstrainedSet
struct ConstrainedByAmplitude <: AmplitudeConstrainedSet
    amp::Array{T} where T <: Real #todo nongegative
end
export ConstrainedByAmplitude
function project(x, feasset::ConstrainedByAmplitude)
    return feasset.amp .* exp.( im * angle.(x))
end
```

```
julia> A = ConstrainedByAmplitude([1, sqrt(2), 5])
ConstrainedByAmplitude([1.0, 1.4142135623730951, 5.0])
julia> y = [2im, -2 + 2im, 6 - 8im]
3-element Array{Complex{Int64},1}:
0 + 2im
-2 + 2im
6 - 8im
julia> project(y, A) ≈ [im, -1 + im, 3 - 4im]
true
```

```
julia> A = ConstrainedByAmplitude([1, sqrt(2), 5])
ConstrainedByAmplitude([1.0, 1.4142135623730951, 5.0])
julia> y = [2im, -2 + 2im, 6 - 8im]
3-element Array{Complex{Int64},1}:
0 + 2im
-2 + 2im
6 - 8im
julia> project(y, A) ≈ [im, -1 + im, 3 - 4im]
true
```

```
iulia> v = zeros(ComplexF32,10,10);
iulia> v[1:5,1:5] = randn(ComplexF32, 5,5);
julia> using FFTW
julia> Y = fft(y)
julia> pr = FeasibilityProblem(ConstrainedByAmplitude(abs.(y)),
julia> gs=AP(3000,1e-18);
julia> z= solve(pr, ones(size(y)), gs)
To converge with 3.6638411145107034e-16 accuracy, it took me 3000
→ iterations
julia abs.(fft(z)) \approx abs.(Y)
true
julia> abs.(z) \approx abs.(v)
true
```

```
iulia> v = zeros(ComplexF32,10,10);
iulia> v[1:5,1:5] = randn(ComplexF32, 5,5);
julia> using FFTW
julia> Y = fft(y)
julia> pr = FeasibilityProblem(ConstrainedByAmplitude(abs.(y)),

    → ConstrainedByAmplitude(abs.(Y)),fft, ifft);

julia> gs=AP(3000,1e-18);
julia> z= solve(pr, ones(size(y)), gs)
To converge with 3.6638411145107034e-16 accuracy, it took me 3000
→ iterations
julia abs.(fft(z)) \approx abs.(Y)
true
julia> abs.(z) \approx abs.(v)
true
```

Check it on a more serious example, dude!

METHODOLOGY

Further extensions are possible in a similar way: add new types and extend methods on them

Further extensions are possible in a similar way: add new types and extend methods on them

DIFFERENT WAYS OF ORTHOGONALISATION: FIRST ATTEMPTS

```
struct GS <: APMethod #todo should be sets part of this or added to the
\leftrightarrow step! only?
         a::AmplitudeConstraint
        A::AmplitudeConstraint
end
GS(a::Array, A::Array) = GS(AmplitudeConstraint(a),
\leftrightarrow AmplitudeConstraint(A))
function init!(alg::GS, x<sup>o</sup>)
         a = alg.a
        A = alg.A
         if !(size(a) == size(A) == size(x^{0}))
                  println("cannot intialise Gerchberg-Saxton, dimensions do
                  \rightarrow not match")
                  # raise error or pad a smaller array with zeroes
                  # also can include realingment of the sets to remove any
                  \leftrightarrow linear pahse term. But then need to make GS mutable
                  return
         end
end
function step!(alg::GS, x<sup>k</sup>)
         a = alg.a
        A = alg.A
         return project(a, ifft(project(A, fft(x<sup>k</sup>))))
end
```

DIFFERENT WAYS OF ORTHOGONALISATION: OOP TRAP

```
function apstep(x<sup>k</sup>, A::FeasibleSet, B::FeasibleSet, forward, backward)
          \tilde{\mathbf{y}}^{k} = \mathbf{forward}(\mathbf{x}^{k})
          y^{k} = project(\tilde{y}^{k}, B)
          \tilde{x}^{k+1} = backward(y^k)
          x^{k+1} = \text{project}(\tilde{x}^{k+1}, A)
end
function apsolve(A, B, ::Type{T}; x<sup>o</sup>=zeros(size(A)), maxit = 20, maxe
\rightarrow =0.01) where {T<:APMethod}
          alg = T(A,B)
          x prev = x^0
          x = x prev
          i = 0
          \epsilon = Inf
          while i < maxit && < > maxe
                    x = apstep(xprev, alg.a, alg.A, alg.forward, alg.backward)
                    \epsilon = LinearAlgebra.norm(x - xprev)
                    x prev = x
                    i += 1
          end
          println("To converge with $\epsilon accuracy, it took me $\epsilon iterations")
          return x
end
```

g

Multiple dispatch: data defines the behaviour of the function (all variables of the function)

OOP: object has a collection of methods (functions), that is only one variable (object type) defines the behaviour of the function

Classes & inheritance	VS	types and methods
gs.solve(.,.,.) and tip.solve(.,.,.)	VS	<pre>solve(.,.,::GS) and solve(.,.,::TIP)</pre>

Multiple dispatch: data defines the behaviour of the function (all variables of the function)

OOP: object has a collection of methods (functions), that is only one variable (object type) defines the behaviour of the function

Classes & inheritance	VS	types and methods
<pre>gs.solve(.,.,.) and tip.solve(.,.,.)</pre>	VS	<pre>solve(.,.,::GS) and solve(.,.,::TIP)</pre>
<pre>gs.solve(.,.,.) and tip.solve(.,.,.)</pre>	VS	<pre>solve(::XX,.,::GS) and solve(:XX,.,::TIP)</pre>

Multiple dispatch: data defines the behaviour of the function (all variables of the function)

OOP: object has a collection of methods (functions), that is only one variable (object type) defines the behaviour of the function

Classes & inheritance	VS	types and methods
<pre>gs.solve(.,.,.) and tip.solve(.,.,.)</pre>	VS	<pre>solve(.,.,::GS) and solve(.,.,::TIP)</pre>
<pre>gs.solve(.,.,.) and tip.solve(.,.,.)</pre>	VS	<pre>solve(::XX,.,::GS) and solve(:XX,.,::TIP)</pre>

The second approach is more flexible (can add new things without worrying about the existing ones) and generalisation of auto-method selection solve(pr,x°) is easy

CONCLUSIONS

- \cdot Writing in Julia promotes "Generic programming" paradigm
- $\cdot\,$ It is indeed similar to mathematical description
- Abstract types represent mathematical concepts and concrete types their implementations
- The orthogonalisation of the types and methods is an iterative process which might bring better understanding and opens possibilities for experimenting with novel methods

https://github.com/olejorik/AlternatingProjections.jl Instructions on how to get started and on the workflow included https://olejorik.github.io/AlternatingProjections.jl/ docs/build/index.html#Workflow-and-package-structure-1

References:

- https://julialang.org/
- https://www.youtube.com/playlist?list= PLP8iPy9hna6StY9tIJIUN3F_co9A0zh0H - JuliaCon 2019
- https://julia.quantecon.org/more julia/generic programming.html
- https://docs.junolab.org/latest/ IDE
- https://plugins.jetbrains.com/plugin/10413-julia IDE
- https://www.youtube.com/watch?v=QVmU29rCjaA developing packages in Julia